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Abstract

Mathematical modeling and properties of a linear longitudinal wave propagating in a slender bar with random

imperfections of material density and Young modulus of elasticity is discussed. Fluctuation components of material

properties are considered as continuous stochastic functions of the length coordinate. Two types of fluctuation and their

influence on response properties have been investigated, in particular the delta correlated and a diffusion-type processes.

Investigation itself is based on Markov processes and corresponding Fokker–Planck–Kolmogorov equation. The

stochastic moments closure as a solution method has been used. Many effects due to the stochastic nature of the problem

have been detected. Along the bar a drop of the mean value of the response with the simultaneous increase of the response

variance have been observed. This effect does not represent any conventional damping, but a gradual drop of the

deterministic and an increase of the stochastic components of the overall response. The rate of the response indeterminacy

increases with the increase of the length coordinate. Increasing values of material imperfection variances and the rising

excitation frequency can lead to a critical state when the length of the propagating wave is comparable with the correlation

length of imperfections. This state will manifest itself as a radical change of the response character. The problem will pass

beyond the boundaries of stochastic mechanics and lose its physical meaning. Similar effects can be observed in the FEM

analysis, where there is also a certain permissible upper boundary of the excitation frequency corresponding with the size

and type of the element used.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of propagation of mechanical stress waves in the medium, the physical characteristics of which
are burdened by random perturbations, arises in a number of disciplines. By way of example one can mention
the propagation of seismic waves, either of natural or technological origin, the wave propagation in materials
with microscopic non-homogeneity of a certain degree, etc.

Although the macroscopic mean values of physical parameters (e.g. E; R) are commonly considered as
constant, it is impossible to avoid the influence of random imperfections in many cases. They originate
from micro polycrystalic structure of metals, from microinclusions in composites with ceramic matrice, etc.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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The random variability of material density and elasticity parameters results in a stochastic component
of the response, even if the excitation itself is deterministic. This phenomenon can be observed in experi-
ments if the induced wave motion in the excitation point is compared to the wave motion at various
distances from the source. In such a case the dispersion of the results is not determined merely by an
unevenness of the experimental equipment, but also by the character of the material itself, see Fig. 1. For
the harmonic excitation of the semi-infinite bar in the point x0 the response frequency curve in the excitation
point is a Dirac-like function. With increasing distance x� x0 the response frequency curve is successively
dropping.

In principle, the value characterizing the deterministic part of the response is dropping with increasing x,
while the stochastic part of the response is increasing in the same time, see Fig. 2 (note: detailed explanation of
the jm1ðxÞj; jm11ðxÞj symbols will be given later). The drop of the deterministic part is not accompanied by any
mechanical energy loss. Only its form is changed from deterministic into stochastic one so that no thermal
energy is produced unless internal viscosity or other source of dissipation would be taken into account. The
increasing rate of the stochastic part of the response is not unexpectable. It fully corresponds to the law of the
Boltzmann’s entropy of probability increase.

As another example can serve the seismic event which approaches a deterministic action in the place of its
origin. In the course of propagation through a non-homogeneous medium, the deterministic component of
soil movement gradually disappears while its random component is increasing with the distance from the
epicenter.
Fig. 1. Successive dropping of the response frequency curve with an increasing distance jx� x0j from the excitation point x0; o0-

excitation frequency; aðx0;oÞ- amplitude of the wave with frequency o.

Fig. 2. Decay of the deterministic part jm1ðxÞj and an increase of the stochastic part jm11ðxÞj of the response with increasing distance from

the excitation point.



ARTICLE IN PRESS
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The problem of wave propagation in stochastic medium attracted considerable attention in the past.
Generally speaking, however, the works concerned merely certain qualitative estimates of the character of
these processes in 2D and 3D media. An extensive survey of these activities with numerous references to
further articles can be found in overview papers, for instance [1,2] and many others. Special Issue of the
Probabilistic Engineering Mechanics has been devoted to problems of materials with random non-
homogeneities [3]. Of the other works directly connected with seismicity one can mention e.g. Refs. [4–7],
etc. Other authors dealt with special problems arising in connection with various types of internal physical
nonlinearity, e.g. Refs. [8,9] or investigated the influence of random roughness of reflection surface on wave
scattering [10]. With regard to the philosophy of construction of mathematical models, however, the above
papers did not describe a number of effects specific for stochastic media. They were oriented to estimate the
global properties of the response rather than to describe detailed properties of the wave propagating in a
continuum with random fluctuations in material parameters.

An interesting approach to analysis of wave propagation in 1D continua represents an application of the
Lyapunov exponent, see Refs. [11,12]. It is a powerful tool for an assessment of basic properties of waves
propagating in a bar of final dimensions. The order of governing differential system remains at two while more
detailed models produce the system of the fourth or sixth order. On the other hand, the above stochastic
models enable more detailed analysis especially in the neighborhoods of boundaries, where the wave
amplitude decrease is more complicated than a simple exponential curve. Boundary effects and main part of
the response should be separated when an in-fined bar is to be investigated. Therefore, the analysis envisaged
in this study does not make use of the Lyapunov exponent.

To enable a detailed analysis of motion, it is necessary to abandon mathematical models based on the small
parameter method. This frequently used procedure does not characterize the motion in detail and, moreover,
it gives physically contradictory results regarding the energy equilibrium law. The principal cause of this
paradox is the fact that the small parameter method considers the random component of the response to be
small and insignificant. This approach is acceptable only in the case of bodies with final dimensions and very
sparse spectrum of natural frequencies. In the domain of infinite dimensions, however, the stochastic part of
the response becomes entirely dominant at a certain distance from the excitation point and the small
parameter method is no longer convergent and provides meaningless results. Also, the usually adopted
independence of perturbations in the adjacent points of the region is unacceptable.

Some of these shortcomings could be eliminated by the application of Markov processes theory. It means to
introduce on the application level the Ito system. Then, for Gaussian inputs, the corresponding FPK equation
for an unknown probability density function (PDF) of the response can be written, e.g. Refs. [13,14] and many
others. Another possibility represents an application of spectral decomposition method, which is based on the
Wiener-Kchinchin theorem, e.g. Ref. [15]. This conventional method which is widely used in linear dynamics
with additive Gaussian excitation, however, does not provide a global insight into the problem and does not
allow to sufficiently respect the non-Gaussian character of the response.

Three possible stochastic models are compared in [16]. The first one fully corresponds to author’s papers
[17,20] where the spectral decomposition approach has been developed and used for a particular analysis.
Probably, the first outline concerning application of Markov processes for longitudinal wave propagation is
done in this paper as well as the Dyson integral equation remembering some steps of spectral decomposition
process.

From the physical viewpoint, it is necessary to admit the stochastic character of both parameters influencing
the wave character: (i) material density and (ii) Young modulus of elasticity. In such a case the response has a
number of new interesting properties, as the imperfections in the stochastic differential equation influence on
the terms with various order of derivatives with respect to x. Generally speaking it is coming to light that the
influence of random imperfections on the terms with higher derivatives has weaker local effects, but manifests
itself at larger distances and, consequently, is rather of global character.

2. Basic mathematical model

Let us consider the problem of propagation of a linear longitudinal wave in a semi-infinite bar with a
constant cross section supposing that the response depends only on the length coordinate x 2 h0;1Þ and is
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Fig. 3. Prismatic semi-infinite bar with random imperfections of density and elasticity module, kinematically excited in the point x ¼ 0.
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independent of the lateral coordinates, see Fig. 3. The only point of the external excitation is the origin x ¼ 0.
The physical characteristics of the bar consist of a constant deterministic part and a small random
perturbation along the bar. In such a case the motion of the bar is governed by the following differential
equation:

ðEðxÞu0ðx; tÞÞ0 � RðxÞ €uðx; tÞ ¼ 0; x�ð0;1Þ, (1)

EðxÞ ¼ E0 þ EeðxÞ ¼ E0ð1þ xEðxÞÞ; RðxÞ ¼ R0 þ ReðxÞ ¼ R0ð1þ xRðxÞÞ,

Efx2EðxÞg � 1;Efx2RðxÞg � 1, (2)

where E0; R0 are the constant mean values of the Young modulus and the material density, xEðxÞ; xRðxÞ are
continuous centered random Gaussian homogeneous processes describing the fluctuations of Young modulus
and material density in the length coordinate x (conditions (2) express that non-dimensional fluctuations
xEðxÞ; xRðxÞ are ‘‘small’’ compared with ‘‘one’’ in the meaning of their variances; a very small but positive
probability is admitted that these processes acquire large absolute values in some points x, however respective
integrals should conserve their existence), Ef�g is the mathematical mean value operator with respect to
Gaussian PDF.

Let us introduce the following kinematic excitation of the bar in point x ¼ 0:

uðx; tÞjx¼0 ¼ K expðiotÞ ) uðx; tÞ ¼ vðxÞ expðiotÞ (3)

which leads to the homogeneous stochastic ordinary differential equation with two multiplicative noises:

ðð1þ xEðxÞÞv
0ðxÞÞ0 þ O2ð1þ xRðxÞÞvðxÞ ¼ 0, (4)

O2 ¼ o2=c2; c2 ¼ E0=R0, (5)

where o is the excitation frequency, c is the longitudinal wave propagation velocity in the corresponding
homogeneous continuum.

Let us transform Eq. (4) into the normal form. To this end the relation ð1þ xEðxÞÞv
0
1ðxÞ ¼ v2ðxÞ can be

introduced. Taking into account inequalities (2), it holds approximately: ð1þ xEðxÞÞ
�1
� ð1� xEðxÞÞ. Then the

following stochastic differential system with multiplicative noises can be written:

v01ðxÞ ¼ ð1� xEðxÞÞ v2ðxÞ,

v02ðxÞ ¼ �O
2ð1þ xRðxÞÞ v1ðxÞ. (6)

Random fluctuations xEðxÞ; xRðxÞ are considered to admit a large variety of types respecting as much
experimental results as possible. For purposes of an analytical investigation they are mostly presented in the
form of a correlation function or a spectral density.

The equation of the type (1) or (4) and problems of the fourth-order describing dynamics of a beam on a
stochastic subsoil as well as other problems, have been investigated by the author of this study in the past,
e.g. Refs. [17–21], using the method of spectral decomposition. Although qualitative properties of the response
have been described, many important details and a global insight into the problem remained hidden. For this
reason another approach being based on Markov processes or Fokker–Planck–Kolmogorov (FPK) equation
is introduced here.
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3. Delta correlated material imperfections

Let us try to represent processes xEðxÞ; xRðxÞ in the most simple way by Gaussian white noises in the
coordinate x. These white noises have a multiplicative character. Therefore, Wong-Zakai correction terms
(see e.g. Refs. [22,23], or monographs [14,24]) in drift coefficient should be taken into account to express
properties of the real physical process of the response. With respect to the form of the stochastic system (6),
the following drift and diffusion coefficients can be formulated:

k1 ¼ v2 þ sREO2v1; k11 ¼ sRRv22; k12 ¼ sREO2v1v2,

k2 ¼ �O2v1 þ sERO2v2; k21 ¼ sERO2v1v2; k22 ¼ sEEv21. ð7Þ

where sij ði; j ¼ E; RÞ are the intensities of white noises xjðxÞ (sER ¼ sRE ) k21 ¼ k12).
Thus, the respective FPK equation, e.g. Refs. [13,14,24,25], for the response PDF can be written

(pðv1; v2; xÞ ¼ p) as:

qp

qx
¼ �

q
qv1
ðv2 þ sREO2v1Þp�

q
qv2
ð�O2v1 þ sREO2v2Þp

þ
1

2

q2

qv21
sRRv22pþ 2

q2

qv1qv2
sREO2v1v2pþ

q2

qv22
sEEO4v21p

� �
. ð8Þ

To apply Eq. (8) for an assessment of the basic properties of the propagating wave, the stochastic moment
closure procedure will be used, see for instance Ref. [26]. Although this procedure does not provide a
convergent series in the general case, it enables to investigate linear systems with ‘‘small’’ multiplicative noises.
In order to assess the first moment of probability density or the mathematical mean value of the response, let
us multiply Eq. (8) successively by factors v1; v2 and apply the operator Ef�g. Using multiple integration by
parts on an infinite domain in both coordinates v1; v2 and taking into account the fact that the PDF is
vanishing together with all derivatives on the boundary of infinite domain, we obtain after a number of
adaptations a linear deterministic differential system for the first stochastic moments m1;m2 of variables v1; v2:

m01 ¼ m2 þ sREO2m1,

m02 ¼ �O
2m1 þ sREO2m2. (9)

Initial conditions can be introduced, for instance, as: m1ð0Þ ¼ K ;m2ð0Þ ¼ 0, see Eq. (3). Instead of Eq. (9) an
equivalent equation of the second order for m1ðxÞ can be written:

m001 � 2sREO2m01 þ O2ð1þ s2REO
2Þm1 ¼ 0; m1ð0Þ ¼ K ;m01ð0Þ ¼ 0. (10)

Eq. (10) indicates that the mathematical mean value or ‘‘deterministic part’’ of the wave does not depend on
the intensities sEE ; sRR. Only the cross intensity sRE associated with the correction terms in drift coefficients kj

enters Eq. (10). Therefore, if the noises xE ; xR are independent or one of them vanishes, then no influence of
material random imperfections on mathematical mean of the response occurs. We may conclude that the mean
value of the response of the random bar is equivalent to the response of the deterministic bar with mean values
of physical properties. On the other hand if sREa0, solution of Eq. (10) cannot provide a meaningful result
unless sREp0 (otherwise the m1 would rise exponentially beyond all limits for increasing x). The above
conclusions, however, are controversial and hardly acceptable. First of all, the request for a negative cross
intensity sRE is meaningless as this value is primarily a result of an independent measurement.

Therefore, the processes xE ; xR should be considered as independent to obtain apparently meaningful result.
Introducing such condition, any influence of parameter fluctuations on the response mean value is avoided. It
leads, consequently, to equivalence of mathematical mean value of the response and of the response following
from a deterministic task for parameter mean values. Although such conclusion can be encountered quite
often in literature, see e.g. Refs. [27–29], this equivalence is rather strange. The system is strongly influenced by
multiplicative noises. Although they are both Gaussian, the response loses in general the Gaussian character,
e.g. Ref. [30]. This fact usually manifests itself as a difference between the above quantities, i.e. between the
mean value m1ðxÞ and the solution of the deterministic task for nominal parameters. The response itself is no
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more a centered process and some PDF skewness also arises. The other way round, the above equivalence
would implicate strong limitations which have been tacitly accepted as to the properties of the material
imperfections.

Let us derive from Eq. (8) a system for the second stochastic moments respecting that the cross-correlation
sRE vanishes. Using similar procedure as before, one obtains the following differential system:

m011 ¼ þ2m12 þ sRRm22,

m012 ¼ �O
2m11 þm22,

m022 ¼ sEEO4m11 � 2O2m12.

This system does not display any link with first moments m1;m2. In the same time, homogeneous initial
conditions should be introduced. In such a case only trivial solution can be obtained and so it is for higher
moments. It would mean that the random part of the solution is trivial and parameter fluctuations do not
influence the result. Therefore, the energy equilibrium law would be violated, see e.g. Ref. [31].

It follows from these paradoxical results that the mathematical model of material fluctuations in the form of
white noises is not satisfactory, because it corresponds with physical reality to a very limited extend of the
input parameter properties and leads to hardly applicable results for neglected as well as for non-zero cross-
correlation of the processes xE ; xR.

Let us refer once again to papers [16,17,20]. Results presented there remain in force. However, the stochastic
model in this study is more complex and enables to assess the influence of various levels of cross-correlation
of both random coefficients as they are defined in Eq. (2). Therefore, it is obvious that any positive cross-
correlation of these input processes leads to non-sensical results that contradict the energy equilibrium law.
4. Material fluctuations of diffuse type

It is obvious that more realistic models of material fluctuations than those represented by the delta-
correlated processes should be introduced. They should better correspond with physical reality to avoid
paradoxical results of the previous paragraph. Let us suppose that a measurement of the parameters EðxÞ; RðxÞ
enables to adopt a hypothesis that they are centered homogeneous Gaussian processes and, moreover, that
their autocorrelations can be characterized by monotonously dropping exponential functions. Such processes
Fig. 4. Spectral density of material imperfections of diffuse type ðs2RR ¼ 1Þ.
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are described by the following correlation functions and corresponding spectral densities, see Fig. 4:

KEEðbxÞ ¼ s2EE expð�aEE jbxjÞ; SEEðWÞ ¼
s2EE

p
aEE

a2
EE þ W2

, (11a)

KRRðbxÞ ¼ s2RR expð�aRRjbxjÞ; SRRðWÞ ¼
s2RR
p

aRR

a2
RR þ W2

, (11b)

where s2EE ; s
2
RR are the variances of respective processes, aEE ; aRR are the scales of correlation length, bx is the

distance from observation point in the length coordinate: bx ¼ x2 � x1, W is the ‘‘spacial frequency’’, i.e. W=2p
means the number of waves on a unit length ½1=m�.

The exponential functions in Eqs. (11) represent a variety wide enough to describe a real situation if the
correlation does not descend below zero. This case, however, is not very probable, and that is why Eqs. (11)
can be used at least qualitatively. Moreover, the processes characterized by Eqs. (11) can be generated by
means of white noises using simple linear filters of the first order:

x0EðxÞ ¼ �aEExEðxÞ þ ZEðxÞ, (12a)

x0RðxÞ ¼ �aRRxRðxÞ þ ZRðxÞ, (12b)

where ZEðxÞ; ZRðxÞ are the white noises with intensities:

sEE ¼ 2s2EEaE ; sRR ¼ 2s2RRaRR; sER ¼ sRE ¼ 0. (13)

With respect to the form of Eqs. (12), the processes xEðxÞ; xRðxÞ can be called diffusion processes and represent
the simplest case of spatial correlation of material imperfections acceptable with reference to the above-
mentioned criteria.

Let us consider Eqs. (6) and (12) together and remember that processes xE and xR are generated by the input
white noise processes ZEðxÞ; ZRðxÞ. The resulting stochastic differential system contains four components of the
response. Completing symbolics introduced in Eq. (6) by v3ðxÞ ¼ xEðxÞ; v4ðxÞ ¼ xRðxÞ, one can formulate the
following stochastic differential system:

v01ðxÞ ¼ v2ðxÞ � v3ðxÞv2ðxÞ, (14a)

v02ðxÞ ¼ �O
2v1ðxÞ � O2v4ðxÞv1ðxÞ, (14b)

v03ðxÞ ¼ �aEEv3ðxÞ þ ZEðxÞ, (14c)

v04ðxÞ ¼ �aRRv4ðxÞ þ ZRðxÞ. (14d)

Excitations in Eqs. (14) are additive and consequently drift coefficients do not contain any correction terms.
However, Eq. (14) are no more linear. The drift and diffusion coefficients read:

k1 ¼ v2ðxÞ � v3ðxÞv2ðxÞ,

k2 ¼ �O2v1ðxÞ � O2v4ðxÞv1ðxÞ; kij ¼ 0 with exception:

k3 ¼ �aEEv3ðxÞ; k33 ¼ sEE ; k34 ¼ 0,

k4 ¼ �aRRv4ðxÞ; k43 ¼ 0; k44 ¼ sRR. (15)

FPK equation for p ¼ pðv1; v2; v3; v4;xÞ has the following form (variable x is omitted):

qp

qx
¼

q
qv1
ð�v2 þ v3v2Þpþ

q
qv2
ðO2v1 þ O2v4v1Þpþ

q
qv3
ðaEEv3Þpþ

q
qv4
ðaRRv4Þp

þ
1

2
sEE

q2

qv23
þ sRR

q2

qv24

� �
p. ð16Þ



ARTICLE IN PRESS
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Because it can be expected that the response will not differ significantly from Gaussian process, the main
characteristics of the deterministic part of the response are given once again by mathematical mean value.
Multiplying the FPK equation, Eq. (16), successively by components v1; v2; v3; v4 and using further the same
strategy as in the previous paragraph, the following differential system can be deduced:

m01 ¼ m2 �m23, (17a)

m02 ¼ �O
2m1 � O2m14, (17b)

m03 ¼ �aEEm3, (17c)

m04 ¼ �aRRm4. (17d)

Eqs. (17c,d) are independent and trivial. They do not provide any new information but just confirming an
original assumption, that processes of the material fluctuations are centered. Only Eqs. (17a,b) are of interest.
Due to the nonlinear character of the original system, Eqs. (14), Eqs. (17) contain the moments higher then of
the first order, in particular m23;m14. In order to close the system, Eqs. (17), the previous procedure should be
repeated with multipliers v1v3; v1v4; v2v3; v2v4. After some evaluations, one can obtain the following four
equations:

m013 ¼ m23 �m233 � aEEm13, (18a)

m014 ¼ m24 �m234 � aRRm14, (18b)

m023 ¼ �O
2m13 � O2m134 � aEEm23, (18c)

m024 ¼ �O
2m14 � O2m144 � aRRm24. (18d)

In Eqs. (18) appear moments of the third order. They have to be approximately transformed using moments of
lower order. Note that the processes v1; v2 do not differ very much from Gaussian ones, and v3; v4 are
Gaussian. In this case the higher moments of even degree can be expressed using products of the second-order
moments, while the odd moments higher then the first degree vanish. For details and general formula, see e.g.
Refs. [32,33] and other monographs.

In particular, processes v1; v2 are slightly non-symmetrical but still can be approximately considered to be
Gaussian with non-zero mean. Therefore, one can write:

v1ðxÞ � m1ðxÞ þ v1f ðxÞ; v2ðxÞ � m2ðxÞ þ v2f ðxÞ, (19)

where v1f ; v2f are centered processes. Under the above supposition it holds approximately:

m233 ¼ Efv2v23g � m2m33 ¼ m2sEE=2aEE ¼ m2s2EE , (20)

and, similarly, using Eq. (13):

m234 � m2sRE ¼ 0; m134 � m1sER ¼ 0; m144 � m1sRR=2aRR ¼ m1s2RR. (21)

Moments m233;m234;m134;m144 in a decomposed form given by Eqs. (20) and (21) together with cross moments
m13;m14;m23;m24 express a relation of mathematical means m1;m2 with intensities of input processes v3; v4
introduced into the system by the white noises ZE ; ZR. Using approximative relations Eqs. (20) and (21), the so
called closing problem can be considered as finished now, as we are able to write a system of six equations with
six unknown moments m1;m2;m13;m14;m23;m24:

m01 ¼ m2 �m23, (22a)

m02 ¼ �O
2m1 � O2m14, (22b)

m013 ¼ �s
2
EEm2 � aEEm13 þm23, (22c)

m014 ¼ aRRm14m24, (22d)
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m023 ¼ �O
2m13 � aEEm23, (22e)

m024 ¼ �s
2
RRO

2m1 � O2m14 � aRRm24. (22f)

A standard procedure can be applied now. It means an exponential form of moments is introduced:

miðxÞ ¼Mi expðlxÞ; mjkðxÞ ¼Mjk expðlxÞ, (23)

where indices i; j; k should be appointed in correspondence with Eqs. (22). Constants Mi;Mjk are components
of a column eigenvector of the square matrix ð6� 6Þ of coefficients on the right-hand side of the system,
Eq. (22). After a cumbersome algebra the following characteristic equation with respect to parameter l can be
obtained:

ðl2 þ O2Þððlþ aEEÞ
2
þ O2Þððlþ aRRÞ

2
þ O2Þ

� O4ðs2EEððlþ aRRÞ
2
þ O2Þ þ s2RRððlþ aEEÞ

2
þ O2ÞÞ þ O6s2EEs

2
RR ¼ 0. ð24Þ

Eq. (24) is of the 6th degree and does not enable, in a general case, any closed form solution applicable to
further analysis. In order to proceed, numerical procedures should be used. On the other hand, Eq. (24) has a
number of properties arising from physical character of the problem it describes. These properties make it
possible to solve special cases exactly and the general case approximately. Two of them are discussed in next
paragraphs.

5. Fluctuations in material density

An important special case of a general problem seems to be a bar with fluctuations in material density and
deterministic Young modulus of elasticity. It means that:

s2EE ¼ 0; aEE ¼ 0. (25)

Consequently, also m13;m23 vanish. At the same time it should be underlined that vðxÞ ¼ v1ðxÞ, see Eqs. (6),
what implies that the m1 describes immediately the mean value of the response. Therefore, the system of
Eqs. (22) simplifies to the form:

m01 ¼ m2, (26a)

m02 ¼ �O
2m1 � O2m14, (26b)

m014 ¼ aRRm14 þm24, (26c)

m024 ¼ �sRRO
2m1 � O2m14 � aRRm24. (26d)

Analogously with Eq. (23), the general solution of the Eqs. (26) has the form:

miðxÞ ¼Mi expðlxÞ; mjkðxÞ ¼Mjk expðlxÞ; i ¼ 1; 2; jk ¼ 14; 24 (27)

producing the simplified version of the characteristic equation Eq. (24):

ðl2 þ O2Þððlþ aRRÞ
2
þ O2Þ � O4s2RR ¼ 0. (28)

Eq. (28) can be converted into a bi-quadratic equation using a transformation l ¼ d� aRR=2:

d4 � 2ða2
RR=4� O2Þ d2 þ ða2

RR=4þ O2Þ
2
� O4s2RR ¼ 0: ðd ¼ aþ ibÞ (29)

Hence, one can obtain four roots of Eq. (28):

l1 ¼ �aRR=2þ aþ ib; l2 ¼ �aRR=2þ a� ib, (30a)

l3 ¼ �aRR=2� aþ ib; l4 ¼ �aRR=2� a� ib, (30b)
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a ¼
1

2
ðððO2 þ a2

RR=4Þ
2
� O4s2RRÞ

1=2
� ðO2 � a2

RR=4ÞÞ

� �1=2
, (30c)

b ¼
1

2
ðððO2 þ a2

RR=4Þ
2
� O4s2RRÞ

1=2
þ ðO2 � a2

RR=4ÞÞ

� �1=2
(30d)

Roots ll ; l ¼ 1� 4 are eigenvalues of the coefficient matrix on the right-hand side of the system Eqs. (26).
Constants Mi;Mjk in Eqs. (27) are the components of lth eigenvector of this matrix. The lth column of

modal matrix can be evaluated as ratios of the respective sub-determinants of the matrix being in a singular
state due to lth eigenvalue ll . They are given by the following formuli:

Ml
1 ¼ llððll þ aRRÞ

2
þ O2Þ, (31a)

Ml
2 ¼ l2l ððll þ aRRÞ

2
þ O2Þ, (31b)

Ml
14 ¼ �llOs2RR, (31c)

Ml
24 ¼ �llOs2RRðll þ aRRÞ. (31d)

As long as a;b remain real positive numbers, it can be easily shown that 0papaRR=2. Then, the real part of
ll ; l ¼ 1� 4 is negative and, consequently, for x!1 real parts of the fundamental system are monotonously
approaching to zero, as limx!1j expðllxÞj ¼ 0. At the same time it has to be emphasized that the Sommerfeld
condition for wave propagation in a semi-infinite interval 0pxo1 is complied with only by solutions for l2;4,
i.e. containing negative imaginary part �ib, while cases for l1;3 would describe the solution for negative x. For
these reasons, to keep the solution physically meaningful, we shall put adequate integration constants
C1 ¼ C3 ¼ 0.

To determine the integration constants C2;C4, we shall apply the initial conditions in the point x ¼ 0. The
response at this point is fully deterministic being given by harmonic excitation Eq. (3). Taking into account
that vðxÞ ¼ v1ðxÞ, initial value for m1ð0Þ can be easily introduced. The second condition follows from a
hypothesis that cross-moment of the displacement and the material density fluctuation vanishes at this point.
The above leads to the simple linear system for integration constants C2;C4:

m1ð0Þ ¼ K ) l2ððl2 þ aRRÞ
2
þ O2ÞC2 þ l4ððl4 þ aRRÞ

2
þ O2ÞC4 ¼ K,

m14ð0Þ ¼ 0) �l2O2s2RRC2 � l4O2s2RRC4 ¼ 0, (32)

which enables to obtain immediately:

C2 ¼ �Kl4= det; C4 ¼ Kl2= det ,

det ¼ l2l4ððl4 þ aRRÞ
2
� ðl2 þ aRRÞ

2
Þ. (33)

Performing a back substitution one can write a solution of the system Eqs. (26):

m1ðxÞ ¼ K=D½�ððl2 þ aRRÞ
2
þ O2Þel2x þ ððl4 þ aRRÞ

2
þ O2Þel4x�, (34a)

m2ðxÞ ¼ K=D½�l2ððl2 þ aRRÞ
2
þ O2Þel2x þ l4ððl4 þ aRRÞ

2
þ O2Þel4x�, (34b)

m14ðxÞ ¼ KO2s2RR=D½el2x � el4x�, (34c)

m24ðxÞ ¼ KO2s2RR=D½ðl2 þ aRRÞe
l2x � ðl4 þ aRRÞe

l4x�, (34d)

D ¼ ðl4 þ aRRÞ
2
� ðl2 þ aRRÞ

2. (34e)

Let us concentrate now on m1ðxÞ, see Eq. (34a). The mean value of the displacement consists of two periodical
damped terms. The period of both terms is the same and corresponds with the parameter b in Eq. (30d).
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This parameter increases for s2RR! 0 monotonously approaching to the value O. This value leads to the

argument bx ¼ Ox ¼ ðo
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R0=E0

p
Þx corresponding with the classical problem for homogeneous material. This

result coincides with that following from the spectral decomposition procedure, see Refs. [17,20]. But much
more information can be gained using Eqs. (34).

The first term in Eq. (34a) is dominant. It is only slightly damped, as for aRR! 0 the parameter a
approaches aRR=2 from below. For the same reason the second term has the character of a merely local
boundary effect with the phase shift þp. This effect, however, still makes the derivatives of the amplitude
jm1ðxÞj at point x ¼ 0 always low or zero and only for higher x it begins to drop approximately according to
expð�aRR=2þ aÞx. It follows that the drop of effective level of the deterministic part of the response is
perceptible only at and farther than a certain distance from the point of excitation. For aR! 0 the expression
Eq. (34a) turns into the solution of the classic problem, as the coefficient of the second term turns to zero
likewise the damping of the first term.

The effect of a more complicated dropping of the amplitude follows from two cooperating exponential
terms in Eq. (34a). It prevents an immediate comparison of the case investigated and the case of wave
propagation in continuum with a simple or complicated visco-elastic properties (e.g. respecting the Voigt
model). When dealing with a visco-elastic material, the response is described by one exponential only.
Therefore a stationary state occurring after a sufficiently long time is characterized by a simple exponential
drop of the amplitude, which is the steepest at x ¼ 0. In a domain where the second term in Eq. (34a) nearly
disappears, the response amplitudes resulting from both stochastic and visco-elastic formulations can be
compared, although it should be emphasized, that their physical background is completely different. The drop
of the amplitude in the case of a material with random fluctuations does not mean any true damping.
The deterministic part of the response is dropping, while the stochastic part is increasing correspondingly.
Fig. 5. Mean value of the response consisting of two parts; Symbols m1;1ðxÞ or m1;2ðxÞ mean the first or the second part of the expression

(34a) respectively; ðs2RR ¼ 1:0; aRR ¼ 1:0;O2 ¼ 1:0Þ.

Fig. 6. Mathematical mean value of the response for various levels of imperfections; ðs2RR ¼ 1:0;O2 ¼ 1:0Þ.
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The character of this wave consisting of two components is demonstrated in Figs. 5 and 6. The slow decay of
the amplitude (absolute value) of the main part and the rapid drop of the boundary effect can be compared in
the left-hand parts, while the total result can be seen in the right-hand parts of these figures.

The basic form of the solution, Eq. (34), is based on an assumption that s2RR is a relatively small value or, in
other words, that the condition

a240) 0os2RRo
a2
RR

O2
¼

a2
RRE0

o2R0
(35)

is complied with and, consequently, the spectral density Eq. (11b) has no sharp maxima in the point W ¼ 0.
The condition Eq. (35) requires that the variance s2RR of the process xRðxÞ should be smaller than a certain
characteristic quantity a2

RRO
�2, which corresponds with a mean correlation length of this process.

It can be expected that the condition Eq. (35) is satisfied for usual materials like metals, composites, etc., if
the excitation frequency is not too high. The condition Eq. (35) represents a straight line separating together
with horizontal axis a2

RR=O
2 domains 1 and 2, see Fig. 7. Some problems can arise for very high excitation

frequencies O, see Eq. (5). The parameter aRR=o represents the inverse value of a certain velocity which is
related to the mean correlation length of the process xRðxÞ. It is possible to say that the condition Eq. (35) is
complied with, if the length of the propagating wave exceeds the length of this correlation. This limitation
reminds of the critical frequencies in discrete or discretized media, e.g. by means of the FEM, except the fact
that in our case we do not exceed the natural frequency of the subsystem (or a single element), but do cross the
limit of determinism of the material parameter. Below this boundary the problem no longer represents any
realistic problem of the stochastic mechanics.

The above results being valid for a continuous model can be compared to a certain extent with those
obtained for various types of chains or discretized models of infinite or finite length, e.g. Refs. [34–39], where
the basic model of the continuum is either random or periodically deterministic. Although the philosophy of
models used in these studies varies from case to case, it can be concluded that the basic effects are nearly
identical, namely the decay of determinacy and increase of indeterminacy with the distance from the excitation
point. Numerical simulations [40,41] confirm this although being obtained for 3D domains.

Let us return to the cases in which the condition Eq. (35) is not complied with, see Fig. 7, domains 3–6. They
can be divided into three areas. The first one is defined predominantly by a condition of positive expression
under the internal square root in Eqs. (30c,d):

s2RR4
a2
RR

O2
; s2RRo 1þ

1

4

a2
RR

O2

 !2

¼ 1þ
1

4

a2
RR

o2

E0

R0

 !2

, (36a)
Fig. 7. Domains of the response types 1-6 according parameters a2
RR=O

2 and s2RR.
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a2
RRo4O2 ¼

4

o2

E0

R0
. (36b)

The condition Eq. (36b) only puts an upper limit for a2
RR=O

2 and separates domains 3 and 4.
In the domain 3, the response is based on the roots

l2 ¼ �1
2

aRR � iz01; l4 ¼ �
1
2

aRR � iz02,

z01;2 ¼ O2 �
1

4
a2
RR � ðO

4s2RR � O2a2
RRÞ

1
2

� �1
2
, (37)

where l1; l3 have been excluded for the same reasons like in Eqs. (30a,b) when domains 1 and 2 have been
discussed.

Let us compare the apparent frequency of the wave and its relative damping as a function of the parameter
S ¼ s2RRO

2=a2
RR characterizing the material density fluctuation variance, correlation length and excitation

frequency O. Non-dimensional frequency b=aRR is identical for both the main part and boundary effect, see
Eqs. (30a,b,d). It is mildly decreasing with rising S in the domain 1 until the limit given by Eq. (35) is reached.
In this point a bifurcation into two branches z01; z

0
2 occurs. They continue throughout domain 3 and finish in

the point representing a boundary with domain 5, see the right-hand part of Fig. 8. Concerning the apparent
non-dimensional attenuation, in domain 1 two branches representing the main part and boundary effect are
visible in the left hand part of Fig. 8. They start from points 0 (main part) or 1 (boundary effect) and continue
increasing or decreasing, respectively, as far as the common point 1/2 on the boundary between domains 1 and
3. Within domain 3, both branches remain identical and constant.

Therefore, the response in domain 3 is described once again by the sum of two exponentials, however, is of a
different character. Theoretically, a certain beat effect originates. It could manifest itself macroscopically by
the presence of an apparent long wave.

Domain 4 differs from domain 3 only in the third condition:

s2RR4
a2
RR

O2
; s2RRo 1þ

1

4

a2
RR

O2

 !2

¼ 1þ
1

4

a2
RR

o2

E0

R0

 !2

, (38a)

a2
RR44O2 ¼

4

o2

E0

R0
. (38b)
Fig. 8. Apparent damping (left part) and frequency (right part) of the periodic part of the response across domain types 1,3; horizontal

axis is scaled by parameter S ¼ s2RRO
2=a2RR; vertical axis in the left part Cd ¼ Reðl2;4Þ=aRR; right part Cf ¼ b=aRR or Cf ¼ z1;2.
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This parameter configuration, however, leads to real roots only:

l1;2 ¼ �
1

2
aRR � z001 ; l3;4 ¼ �

1

2
aRR � z002,

z001;2 ¼
1

4
a2
RR � O2 � ðO4s2RR � O2a2

RRÞ
1
2

� �1
2
, (39)

which results in a synthesis of four exponentials with real negative exponents. It would follow that the
response in the variable x is not of wave character at all and that, consequently, the excitation (impulse)
propagates at an infinitely high velocity. Such material properties would mean too high probability of the state
in which the imperfections will overcome completely influence of the parameter nominal value R0. Even if we
admit such a state (due to Gaussian character of imperfections), it must not occur ‘‘in a too great extent’’,
which is described by the condition Eq. (35). Otherwise, this case involves big imperfections to which a
different mathematical model would have to be applied. It is a question, of course, how realistic is this case
and how far it reflects the real nature of the problem. Certainly, it should be eliminated when the assumption
of a limited normal distribution of imperfections has been adopted.

Similar approach can be applied also to the third area, domains 5 and 6, lying above the parabola Eq. (38a):

s2RR4 1þ
1

4

a2
RR

O2

 !2

¼ 1þ
1

4

a2
RR

o2

E0

R0

 !2

. (40)

In this case, characteristic equation (28) has the solutions:

l1;2 ¼ �1
2
aRR � z0001 ; l3;4 ¼ �1

2
aRR � {z

000
2 . (41)

It would follow from Eq. (41) that the result would contain, once again, non-periodic components of
problematic physical interpretation like in the preceding case.

Consequently, we can state that only the cases satisfying the condition Eq. (35) and being given by the
solution Eq. (34) are physically meaningful. Other cases violate basic assumptions of small scale fluctuation of
material density, of non-zero correlation in the length coordinate and, in general, of random nature of input/
output processes. One can simply conclude that cases not satisfying condition Eq. (35) cannot be investigated
using the mathematical model Eq. (14). Transition cases being on limits separating individual domains in
Fig. 7 have not been dealt. They are characterized by multiple roots of Eq. (28) and should be subjected to a
special analysis. However, it would need a wearisome work and cannot provide any information important
from physical point of view.

Results obtained in this part are similar to those obtained using the spectral decomposition method, see
Refs. [17,20]. Another special case where stochastic parts of coefficients coincide have been outlined in
Ref. [16] for similar diffusion spectral density of coefficients. Results presented in Ref. [16] are very near to
those obtained in the last two paragraphs of this study.

6. Fluctuations in both parameters

Let us admit imperfections both in the Young modulus of elasticity and in the density of the material. The
full form of the system Eq. (22) and of the characteristic equation (24) must be used. As long as the
investigation is oriented into the region of small imperfections (see Eq. (2) and a detailed condition Eq. (35)
concerning density fluctuation only), it can be shown using conventional theorems of polynomial algebra, that
Eq. (24) has only three pairs of complex conjugate roots. Therefore, the basic formulation of the problem does
not admit any real as well as multiple roots, unless a very non-probable case of material parameters match
would occur. These cases would lead to various anomalies described in the preceding two chapters and we
shall not deal with them.

The first part of Eq. (24) is dominant, while the influence of the second part is determined by small
parameters s2EE ;s

2
RR and that of the third part by the product s2EEs

2
RR. Consequently, on the level of a linear

approximation and with regard to Eq. (2) the third part can be neglected. Therefore the position of the roots
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can be determined approximatively in the form:

li ¼ l0i þ ps2EE þ qs2RR, (42)

l01;2 ¼ �iO; l03;4 ¼ �aEE � iO; l05;6 ¼ �aRR � iO, (43)

where l0i are the roots of the first part of Eq. (24), representing a certain ‘‘zero’’ approximation:

ðl2 þ O2Þððlþ aEEÞ
2
þ O2Þððlþ aRRÞ

2
þ O2Þ ¼ 0. (44)

If the fluctuations of input parameters disappear, only the first binomial in Eq. (44) will remain meaningful
describing the very basic case of a perfect material, while the other two binomials lose their physical
significance.

Let us substitute the approximate expressions Eq. (42) in Eq. (24) and retain only terms up to the first degree
of s2EE ; s

2
RR. Comparing corresponding coefficients, a linear system for unknown parameters p; q can be

composed and evaluated. There is to eliminate out three of the six roots Eqs. (43) those laying in the upper half
of the Gaussian plane, as they result in solutions not complying with the Sommerfeld condition for x40. The
approximate values of l2; l4; l6, consequently, are:

l2 ¼ �iOþ s2EE

�2O4 þ iaEEO3

2aEEða
2
EE þ 4O2Þ

þ s2RR
�2O4 þ iaRRO3

2aRRða2
RR þ 4O2Þ

, (45a)

l4 ¼ �aEE � iOþ s2EE

2O4 þ iaEEO3

2aEEða
2
EE þ 4O2Þ

, (45b)

l6 ¼ �aRR � iOþ s2RR
2O4 þ iaRRO3

2aRRða2
RR þ 4O2Þ

. (45c)

The values given by Eqs. (45) can be taken as approximate eigenvalues of the coefficient matrix of the system
Eqs. (22). Evaluating respective eigenvectors, one arrives in this way at an approximate fundamental system
and can write the general solution. The three integration constants will result from an application of the initial
conditions in x ¼ 0. Taking into account symbolics used in the previous paragraph, see Eq. (32), one can
formulate the following initial conditions:

m1ð0Þ ¼ K ; m13ð0Þ ¼ 0; m14ð0Þ ¼ 0. (46)

The approximate roots Eqs. (45) can be used up to about 30% of the critical value of s2EE or s2RR. The
dependence of the roots on s2EE ; s

2
RR does not differ much from the linear in the rather broad vicinity of zero.

The first two terms of Taylor series of the roots Eqs. (30), are identical with approximate roots Eqs. (45), when
s2EE ¼ 0; aEE ¼ 0. The third and higher terms of the expansion yield much lower values in the given domain
and, consequently, can be neglected. The approximations Eqs. (45), naturally, do not allow to identify the
critical values of s2EE or s2RR and some further phenomena we have been concerned with in the previous
simpler case. However, a qualitative analysis of the character of the solution for small values of s2EE or s2RR can
be made.

Let us study, therefore, the physical meaning and character of the roots of Eq. (24). The first binomial in the
dominant part of Eq. (24) results in the solution of l01;2 according to Eq. (43). It represents the principal part
of the description of the response linking up with classic solutions for the material without fluctuations. Both
parts of the correction in Eq. (45) have a real part which means that jm1ðxÞj drops due to the influence of both
imperfections with the growing x asymptotically to zero. This decrease is the faster, the more significant are
the fluctuations. The only source of this pseudo-damping, however, is the correction in Eq. (45), and not the
basic value of the root l02, which is pure imaginary. Due to the imperfection of density xRðxÞ the spatial
frequency of the response decreases, while the fluctuation xEðxÞ tends to increase this frequency.

The meaning of the remaining two binomials in the dominant part of Eq. (24) depends on the particular
values aEE ; aRR, see Eq. (44). Their influence is the higher, the smaller are the aEE ; aRR or the higher are the
peaks of the spectral densities Eqs. (11), or, in other words, the more the imperfections are concentrated at
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small frequencies. However, if aEE and aRR drop, also the significance of the basic root l02 decreases, as the real
part of the correction in Eqs. (45) decreases. In any case, however, the roots l04; l06 have significant negative
real parts and, consequently, the corresponding parts of the response are of the character of boundary effects
in the neighborhood of the point x ¼ 0. With the growing portion of fluctuations their influence decreases with
increasing x more slowly. However, the significance of the roots Eqs. (45b,c) is quantitatively comparable with
the root Eq. (45a) only in the domain around the origin.

It is coming to light that on the level of linear approximation Eqs. (45b,c) each of the roots l4; l6 is always
influenced by the fluctuations of one of the parameters only. It is possible to say that l4 appertains to the
fluctuations of xEðxÞ, and l6 to the fluctuations of xRðxÞ. The sum of corrections of the imaginary part of l4; l6
equals the corrections of the imaginary part of l2. Consequently, the principal part of response being described
by l2 has a periodical part, consisting of two ‘‘mutually modulating’’ harmonic waves, each of which has its
counterpart in the harmonic wave coming from l4 and l6. Consequently, the mathematical mean value of the
response has the character of a mixture of two evanescent waves with monotonously decreasing absolute value
and lower derivative of their absolute value in the origin than at a certain distance from this point. In other
words, the decrement of m1ðxÞ in the proximity of the origin is small and will manifest itself only later for x

outside a neighborhood of the origin. This means that in the proximity of the origin it is possible to admit, on
some accuracy level, the equivalence of the classic solution and the mathematical mean value of the response
of the continuum with deterministically or randomly varying parameters, e.g. Refs. [42,43]. In such a case the
method of small parameter can be used with care on a very short interval of parameter fluctuation. However,
the admissible distance from the origin cannot be very large, because the conventional model cannot be
accepted particularly for bodies with infinite dimensions, as it results in physical paradoxes.

7. Conclusions

The solution of harmonic wave motion in the continuum the Young modulus of elasticity and the density of
which are random variables of the longitudinal coordinate gives rise to a number of special effects. If a
harmonic, fully deterministic kinematic excitation is applied to one end of a prismatic semi-infinite bar with
the above-mentioned properties, the very longitudinal force at the origin effecting this motion is of stochastic
character, if burdened by imperfections of the Young modulus of elasticity. In the bar it is possible to observe
a drop of the response mean value with the simultaneous increase of the response variance. Typical is the
relatively small drop of the mathematical mean value up to a certain distance from the point of excitation,
which is followed by a steep drop and final approach to the horizontal asymptote jm1ðxÞj ! 0. This is not the
damping in the proper meaning of the term, but a gradual drop of the deterministic and an increase of the
stochastic components of the overall response. In other words, the rate of indeterminacy of the response
increases with the increase of x. With growing x the process of the response approaches a homogeneous
process. Its slightly non-Gaussian character can be represented, particularly for major distances from the
point of excitation, by a non-centered character of the respective Gaussian curve.

The principal character of the response is the same in case of imperfections of both parameters separately as
well as with their simultaneous application. The boundaries between individual response types (rather
boundaries of physical applicability of a mathematical model used), in the case of perturbations EeðxÞ and
ReðxÞ, however, are entirely different. For low imperfection levels they do not differ much.

In case of increasing values of dispersion of imperfections (s2EE ;s
2
RR) , the rising excitation frequency o and

rising sharpness (given by aEE ; aRR) of the imperfections spectral densities, it is possible to attain a critical
boundary when the length of the propagating wave is comparable with the ‘‘correlation length’’ of
imperfections. This state will manifest itself by a radical change of the response character. This transitory
stage will terminate soon, the problem will pass beyond the boundaries of stochastic mechanics and will lose
its physical meaning in this formulation. Similar effects can be observed in the FEM, where there is also a
certain permissible upper boundary of the excitation frequency corresponding with the size and type of the
element used.

The mathematical model describing the imperfections as white noise in the longitudinal coordinate is
problematic, as it yields the results which either cannot respect cross-correlation of material parameter
fluctuations or they are at discrepancy with the energy equilibrium law. For similar reasons also the small
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parameter method is hardly applicable. It is necessary to use as basis at least the diffusion model of
imperfections which is characterized by exponential correlation in space. From this viewpoint it is necessary to
impose stricter requirements on the internal structure of imperfections of the Young modulus of elasticity than
on that of imperfections of material density.

Concerning the methods, a mathematical model following from the theory of Markov processes and
respective FPK equations seems to be the most flexible and capable of avoiding several ambiguous steps which
are necessary when using integral decomposition procedure. Nevertheless, the main character of results
obtained when using any of these methods coincide in principle even if some details are slightly different. Also
conclusions obtained when investigating discrete either finite or infinite systems of periodical or random
character are comparable with those obtained in this study.
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